If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=3x^2-18x+9
We move all terms to the left:
0-(3x^2-18x+9)=0
We add all the numbers together, and all the variables
-(3x^2-18x+9)=0
We get rid of parentheses
-3x^2+18x-9=0
a = -3; b = 18; c = -9;
Δ = b2-4ac
Δ = 182-4·(-3)·(-9)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{6}}{2*-3}=\frac{-18-6\sqrt{6}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{6}}{2*-3}=\frac{-18+6\sqrt{6}}{-6} $
| 60h+5-14h=48h+5 | | 17x+16=-11 | | -3x^2+12x+-15=0 | | 50+60x=80+50x= | | 3x+3=6x+5 | | y+4−1=18.y= | | 3x-49=11 | | 600=8x-0.02x^2 | | 5x^2-3-15=0 | | 2(16y-5)-6=5(3y+3)-23 | | 6+4x=72 | | 42=y-14= | | (7x-2)(5x+3)=-54+23x+35x2 | | 8z=2(2z+1) | | 0.5x=3.4 | | (3x+5)+371x=180 | | 7(2y-3)=34 | | 4x+10=2(2x+50 | | 7(2y-3)=24 | | x-5/9=1 | | 1/3x+4=13 | | 4y-20=100 | | 12.3^m=75^100 | | 3(x-11)-9=30x-123 | | 4^7=5^p | | 7x-3(6x+2)=-116 | | 3b-8/2=62 | | -12(x+2)+264=24+24 | | 5p+3=48 | | χ²-56x=-768 | | -100=-20z | | 4k-3k^2=0 |